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Abstract

Remote photoplethysmography (rPPG) is a contactless
method to measure human vital signs by detecting subtle
skin color changes through a camera. Although many stud-
ies have used region of interest (ROI) selection tools to im-
prove rPPG signal extraction, no study has investigated the
influence of the ROI’s surface orientation. We propose a
novel ‘angle map’ representation of the face to study the
effects of the surface orientation on the extracted rPPG sig-
nal. The angle map is generated by mapping each facial
pixel to an angle of reflection (angle between the skin sur-
face and the camera) calculated from the surface normal of
the facial landmarks and the camera axis. Our results show
that surface orientation significantly affects the correlation
between the extracted rPPG signal and ground truth blood
volume pulse (BVP). Regions with small angles of reflection
contained stronger signals, which explains why areas near
the cheeks and forehead are often chosen for rPPG signal
extraction. Moreover, we applied a thresholding method to
the angle map and demonstrated its potential for dynamic
ROI selection, thereby optimising the rPPG signal extrac-
tion process.

1. Introduction

Over the last decade, remote measurement of human vi-
tal signs has received growing attention in the research com-
munity. Remote photoplethysmography (rPPG) is an opti-
cal technique that measures physiological signals from fa-
cial videos by analysing subtle blood volume changes un-
der the skin. From the rPPG signal, researchers have been
able to extract vital signs such as heart rate [14, 25], respi-
ration rate [19, 27], blood pressure [6, 26],and oxygen satu-
ration [9, 21].

Due to the nature of remote measurement, the rPPG sig-
nal is susceptible to various sources of noise. Small differ-
ences in illumination [16,17], camera specification [15,22],
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subject motion [5,24] and distance to the camera [1,8], skin
tone [10,18], and make-up [28] can significantly impact the
quality of the extracted signal. As the signal-to-noise ratio
(SNR) varies across different face areas, region of interest
(ROI) selection is a common technique used to minimize
the effects of noise while choosing the areas that contain
the most physiological information.

Given the integral role of ROI selection in rPPG signal
extraction, many methods have been proposed. Kwon et al.
[11] found that the forehead and cheeks have stronger rPPG
signals than other areas of the face. Similar results were
shown in [7], which carried out a comparison of 30 ROIs
based on skin thickness. Zhao et al. [30] proposed multi-
scale facial ROIs to obtain independent rPPG signals and
combined them with Gaussian priors to produce a higher
quality signal.

Researchers have also proposed methods that perform
ROI selection dynamically over time, as dynamic ROI
selection is more efficient in dealing with head motions
[23, 29]. Lee et al. [12] suggested a way to choose the
ROI based on pulsatile strength determined from the size
of the pulsatile signal amplitude. Bobbia and colleagues
[2] decomposed the human face into Temporal Superpix-
els (TSP) and identified the most prominent signals based
on the SNR. The weighted average of the individual signals
from the TSPs was calculated to obtain the final rPPG sig-
nal. Tulyakov et al. [23] used image warping to construct a
rectangular region below the eyes, divided the selected re-
gion into multiple smaller ROIs, and applied self-adaptive
matrix completion (SAMC) to extract the optimal rPPG sig-
nal. The group of de Haan [29] considered every facial skin
pixel as an independent rPPG source and proposed a frame-
work that exploits the spatial redundancy to remove head
motions artifacts from the rPPG signal.

The Dichromatic Reflectance Model (DRM) [20] is
widely used in many rPPG methods to model the interac-
tions between the light reflected from the skin and the cam-
era. It is given by the equation:

L(λ) = mscs(λ) +mdcd(λ) (1)
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Figure 1. Illustration of the angle of reflection for a face pixel
during rPPG signal extraction.

where the total detected light, L, is composed of the spec-
ular reflection (light reflected from the surface), cs(λ), and
the diffuse reflection (light containing physiological infor-
mation reflected from beneath the skin), cd(λ). According
to the DRM, the scaling factors of the specular reflection,
ms, and diffuse reflection, md, strongly depend on the an-
gle of reflection (angle between the surface normal and the
camera shown in Figure 1). Despite the significance of the
surface orientation for rPPG signal extraction, no studies
have considered this factor for ROI selection.

In this paper, we propose a novel face angle
representation–that is, an angle map–to investigate the sur-
face orientation of the face for improved rPPG signal extrac-
tion. We conduct our investigation and analysis on a public

database, UBFC-rPPG [2], and demonstrate the feasibility
of using angle maps for dynamic ROI selection. Below is
the summary of our main contributions:

• It is the first study of the effect of surface orientation
on rPPG signal extraction.

• It proposes a novel facial representation of the skin’s
surface orientation, angle map, that is a 2-dimensional
image containing the angle of reflection of each facial
pixel.

• It demonstrates the potential of the angle map for dy-
namically selecting ROIs based on their surface angle
orientation, thereby optimising the strength of the ex-
tracted rPPG signals.

2. Methods
2.1. Surface Orientation Calculation

Figure 2 shows the overall pipeline to generate an angle
map from an image. For each image frame, we applied the
MediaPipe FaceMesh [13] to detect 468 3D landmarks of
the subject’s face. The 3D facial landmarks serve as ref-
erence points for the subsequent calculation of the surface
normal vectors and angles of reflection (Figure 1) of the fa-
cial pixels.

We defined the set of possible surface normal vectors at
landmark j, Sj , as:

Sj = {v⃗ji×v⃗jk|i = [1 .. m−1], k = [i+1 .. m],m ∈ Z+}
(2)

where vji denotes the vector from landmark j to a neigh-
boring landmark i, vjk denotes the vector from landmark
j to another neighboring landmark k, and m is a positive
integer representing the number of neighboring landmarks
used to estimate the set of possible surface normal vectors
for landmark j. Inspired by [31], we used the analysis of
covariance (ANCOVA) to choose the most representative
surface normal at landmark j from the set. Finally, the an-
gle of reflection of landmark j, θj , is estimated as:

Figure 2. Process of generating an angle map.
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θj = arccos(
N⃗j · Z⃗
|N⃗j ||Z⃗|

) (3)

where N⃗j is the surface normal of landmark j and Z⃗ is
the unit vector of the camera axis.

2.2. Angle Map Generation

After calculation of the surface orientation, we mapped
the angle of reflection of each 3D landmark to the corre-
sponding 2D location of the landmark shown in Figure 3.
We extrapolated the surrounding area of each landmark to
generate the final angle map. Figure 4 shows how the an-
gle map changes according to the subject’s face orientation.
Additionally, the right column illustrates the selected area
when a 45◦ threshold is applied to the angle map. In other
words, pixels with an angle of reflection larger than 45◦ are
removed.

Figure 3. Corresponding 2D locations of the facial landmarks de-
tected using [13].

2.3. Evaluation

The rPPG signals of the face are necessary for evaluat-
ing the feasibility of the angle map for dynamic ROI selec-
tion. To extract the rPPG signals, we applied skin segmen-
tation [3] on the original frames to remove areas with low
SNR. Next, we performed histogram analysis on the face
images in the HSV color space and calculated the High-
est Posterior Density (HPD) with α = 0.05. By using the
HPD and defining threshold values for all color channels,
we masked out the non-skin areas in the video frames. Us-
ing a similar transformation as Section 2.2, we mapped the
RGB values of the 3D facial landmarks to a correspond-
ing 2D image array with the same dimensions as the angle
map. Lastly, we utilized a chrominance-based method [4] to
obtain the rPPG signal of every pixel within the 2D image
array.

Figure 4. Example of how the angle map changes according to the
face direction. Left column shows 3D face landmarks overlaid on
the face images. Middle column shows the corresponding angle
maps. Right column shows the selected area (yellow) when the
angle of reflection is < 45◦.

The following metrics were used to evaluate the effect of
surface orientation, specifically the angle of reflection, on
the extracted rPPG signals:

• Correlation Coefficient (ρ) between the extracted
rPPG signal X and the ground truth BVP Y of each
facial pixel. The equation is as follows:

ρ =
(X − µX)(Y − µX)

σXσY
(4)

where µX and µY denote the mean value of X and Y ,
while σX and σY denote their variance, respectively.
ρ = 1 and ρ = −1 correspond, respectively, to the
strongest positive and negative linear correlation be-
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tween the two signals, while ρ = 0 indicates there is
no linear correlation at all.

• Signal-to-Noise Ratio (SNR) of the rPPG and BVP
signals. The SNR is calculated by dividing energy dis-
tribution inside the desired band by the energy in the
spectrum that lies outside of the desired band. The for-
mula by [4] was adopted:

SNR = 10log10

∑240
f=30(Ut(f)Ŝ(f))

2∑240
f=30((1− Ut(f))Ŝ(f))2

(5)

where Ut(f) is a binary template window defined in
[4], Ŝ(f) is the spectrum of the rPPG signal, and f is
the frequency in beats per minute (bpm). The desired
signal band falls within the range of the general human
pulse rate, i.e. 30bpm to 240bpm.

3. Experiments and Results
3.1. Dataset

The UBFC-rPPG dataset [2] is composed of 50 1-
minute-long videos in 8-bits RGB uncompressed format.
Each subject is situated 1 meter from the camera and re-
quired to play a time-sensitive mathematical game intended
to increase his/her heart rate. The ground-truth heart rate
and PPG data are directly available in the dataset.

3.2. Validating the Impact of Angle of Reflection on
rPPG Signal Quality

We used pixel binning to average out sensor noise and
produce a 16x16 array representing individual ROIs of the
face (hereafter called pixel ROIs). Figure 5 illustrates the
average correlation between the extracted rPPG signal and
the ground truth BVP signal (left) and the average angle of
reflection (right) for each pixel ROI over the 50 subjects
in the UBFC-rPPG dataset. The eyes and lip areas were
masked off since we only wanted to consider the skin sur-
face. It is worth noting that the pixel ROIs near the cheeks
and forehead areas have higher correlation coefficients and
smaller angles of reflection.

Figure 6 illustrates the plot of the average correlation co-
efficient between the rPPG and BVP signals against the an-
gle of reflection of the pixel ROIs. We observe that decreas-
ing the angle of reflection significantly increases the cor-
relation coefficient between the predicted and ground truth
signals (p < 0.001).

3.3. Size of Pixel ROI Array

To further validate our hypothesis, we performed pixel
binning to produce additional pixel ROI arrays of different
sizes: 8x8 and 32x32. As shown in Figure 7, the inversely
proportional relationship between the correlation coefficient

Figure 5. Average correlation coefficient between the rPPG and
BVP signals for each pixel ROI (left) and average angle of reflec-
tion for each pixel ROI (right) over all subjects in the UBFC-rPPG
dataset.

Figure 6. Average correlation coefficient between extracted rPPG
signal and ground truth BVP signal versus the angle of reflection
per pixel ROI.

and the angle of reflection still holds for pixel ROI arrays
of different sizes. We also observe a slight decrease in the
R-squared (R2) value as the size of the pixel ROI array in-
creases, which could be due to increased sensor noise cap-
tured by each pixel ROI in large pixel ROI arrays.

3.4. Thresholding Angle Map for ROI Selection

To investigate the feasibility of using the angle map for
dynamic ROI selection, we applied different thresholds to
mask off pixel ROIs based on their angle of reflection. We
averaged the remaining pixel ROIs of the masked face to ex-
tract the rPPG signal for subsequent analysis. Figure 8 and
9 show the average correlation coefficient between the ex-
tracted rPPG signal and ground truth BVP and the average
SNR of the extracted rPPG signals at different threshold an-
gles, respectively. By setting a threshold at 45◦ (pixels ROIs
with an angle of reflection above 45◦ are masked off), the
rPPG signal extracted from the masked face, regardless of
the size of the pixel ROI array, has a significantly higher cor-
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Figure 7. Average correlation coefficient between extracted rPPG
signal and ground truth BVP signal versus the angle of reflection
per pixel ROI for arrays of different sizes.

relation coefficient and SNR than the rPPG signal extracted
from the full face benchmark (p < 0.05). We hypothe-
size that a smaller angle threshold does not achieve better
signal quality due to over-masking of the pixel ROIs, thus
increasing the amount of sensor noise during rPPG signal
extraction.

Another benefit of applying the angle mask for ROI se-
lection is to desensitize the influence of the size of the pixel
ROI array on the quality of the rPPG signal. As shown in
Figure 7, the correlation between the rPPG signal and its
ground truth are affected by the size of the pixel ROI array.
After applying the threshold, the influence has been reduced
as illustrated in Figure 8, thereby increasing the robustness
of the angle mask for rPPG signal extraction. In addition,
the switching from the linear relationship in Figure 6 to the
inverted U-shape curves in Figures 8 and 9 enable a data
structure for optimisation of signal quality.

4. Conclusion and Future Works
We report the first study on the effects of surface ori-

entation on rPPG by using a novel angle mask and illus-
trated the impact of the angle of reflection on the quality
of the extracted rPPG signal. Our results show that de-
creasing the angle of reflection significantly and linearly
increases the correlation between the extracted rPPG sig-
nal and ground truth BVP. The dependence of the extracted
signals on the surface orientation explains why the ROIs
around the cheek and forehead areas of front-facing subjects
mostly contained stronger rPPG signals. This demonstrates
the possibility of using the angle mask for dynamically se-
lecting ROIs, thereby optimising the rPPG signal extraction
process.

We will take our future works in two directions. First, the
quality of the rPPG signal in different face areas can be fur-

Figure 8. Average correlation between extracted rPPG signal and
ground truth BVP at different threshold values.

Figure 9. Average SNR of the extracted rPPG signals at different
threshold values.

ther investigated with subjects facing in different directions
and undergoing different types of head motions. We also
want to explore the angle map for optimising remote mea-
surement of vital signs, such as utilizing it as an attention
mechanism for training neural networks. Second, we want
to refine the methods for dynamically selecting ROI based
on the surface orientation of other body parts and study its
relationship with skin thickness. This work will enable us to
utilize rPPG for accurate remote measurement of vital signs
while protecting users’ privacy.
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