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Abstract: Heart rate (HR) is one of the essential vital signs used to indicate the physiological1

health of the human body. While traditional HR monitors usually require contact with skin,2

remote photoplethysmography (rPPG) enables contactless HR monitoring by capturing subtle3

light changes of skin through a video camera. Given the vast potential of this technology in the4

future of digital healthcare, remote monitoring of physiological signals has gained significant5

traction in the research community. In recent years, the success of deep learning (DL) methods6

for image and video analysis has inspired researchers to apply such techniques to various parts7

of the remote physiological signal extraction pipeline. In this paper, we discuss several recent8

advances of DL-based methods specifically for remote HR measurement, categorizing them based9

on model architecture and application. We further detail relevant real-world applications of remote10

physiological monitoring and summarize various common resources used to accelerate related11

research progress. Lastly, we analyze the implications of research findings and discuss research12

gaps to guide future explorations.13

Keywords: noncontact monitoring; heart rate measurement; remote photoplethysmography;14

rPPG; deep learning15

1. Introduction16

Human vital signs, such as heart rate (HR), body temperature (BT), respiratory rate17

(RR), blood oxygen saturation (SpO2), heart rate variability (HRV), and blood pressure18

(BP), are common indicators used for monitoring the physiological status of the human19

body [1–4]. They can be used to estimate and analyze a person’s physical health, detect20

possible diseases, and monitor recovery. In particular, closely monitoring a person’s HR21

can enable early detection and prevention of cardiovascular problems like atherosclerosis22

(heart block) and arrhythmia (irregular heart rate) [5].23

Photoplethysmography (PPG) is a common method for measuring HR. It utilizes a24

light source and photodetector to measure the volumetric changes of blood vessels under25

the skin [6,7]. As the light source illuminates the tissue, small variations in reflected or26

transmitted light intensity from blood flow are captured by the photodetector, yielding27

the so-called PPG signal [7]. The absorption of light follows the Beer–Lambert law,28

which states that the light absorbed by blood is proportional to the penetration of light29

into the skin and the concentration of hemoglobin in the blood [8]. During the cardiac30

cycle, minute variations in hemoglobin concentration cause fluctuations in the amount of31

light absorbed by the blood vessels, resulting in changes of skin intensity values. Pulse32

oximeters are commonly used for non-invasive measurement of these slight variations33
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in the skin through PPG. However, like other wearables and contact-based devices (e.g.,34

smartwatches), they are unsuitable for monitoring newborns or patients with fragile35

skin [9,10]. Furthermore, long-term monitoring may lead to discomfort and even the36

risk of skin infections [11]. As a result, contactless PPG methods have emerged as an37

attractive alternative.38

During the last decade, rPPG methods have gained significant traction. In rPPG, a39

digital camera (e.g., webcam, standard RGB camera, near-infrared camera) functions as40

a photodetector that captures subtle color changes of the skin; ambient light typically41

serves as the light source [12]. Figure 1 illustrates the principle of rPPG with the dichro-42

matic reflection model (DRM) [13]. According to the DRM, the signals captured by the43

digital camera are a combination of specular reflections (surface reflections) and diffuse44

reflections (body reflections). Specular reflections occur at the interface of the incident45

light and the skin, which do not contain meaningful physiological signals. Thus, rPPG46

methods utilize signal processing techniques to separate the specular reflections and47

extract the diffuse reflections associated with the underlying signals of interest. The48

ability for contactless measurement can significantly reduce monitoring costs and enable49

applications where traditional contact sensors would be suboptimal [14]. However,50

while rPPG technology will undoubtedly play a pivotal role in the future of digital51

healthcare, the extracted signals are inherently much weaker and require meticulous52

processing.53

Figure 1. Principle of rPPG based on the DRM. The digital camera captures the specular and
diffuse reflection from ambient light. The specular reflection contains surface information that
does not relate to physiological signals, while the diffuse reflection is modulated by blood flow.
The rPPG signal can be obtained from further signal processing.

Verkruysse et al. [15] was the initial research that used a consumer-level camera with54

ambient light for measurement of rPPG signals. In their work, the green channel was55

found to contain the most significant PPG signal. Poh et al. [16] applied a blind source56

separation (BSS) technique, independent component analysis (ICA), on the recorded57

RGB color channels from a webcam to recover HR. Lewandoska et al. [17] applied a58

similar method, principal component analysis (PCA), which reduced the computational59

complexity while achieving a similar accuracy to ICA. However, these methods are60

subject to motion artifacts. To improve the motion robustness of the rPPG model,61

a chrominance-based approach (CHROM) was proposed [18]. In this approach, the62

dichromatic reflection model was used to describe the light reflected from the skin as63

specular and diffuse reflection components [19]. De Haan and van Leest [20] defined a64

blood-volume pulse vector, which represents the signature of blood volume change, to65

identify the subtle color changes due to the pulse from motion artifacts based on RGB66

measurement. Later, Wang et al. [21] proposed a data-driven algorithm, spatial subspace67

rotation (2SR), to estimate a spatial subspace of skin pixels and evaluate its temporal68

rotation to measure HR. Wang et al. [13] further proposed a plane-orthogonal-to-skin69
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(POS) algorithm that defines a projection plane orthogonal to skin tone in the RGB space70

to extract the pulse signal. Further information about early conventional rPPG methods71

can be found in the following surveys [14,22,23].72

Most conventional methods for remote HR measurement follow a similar frame-73

work as shown in Figure 2. Firstly, a digital camera captures a video recording of the74

subject. Next, a face detection algorithm, such as the Viola and Jones algorithm [24], is75

applied to obtain the bounding box coordinates of the subject’s face. This is followed by76

selecting regions of interest (ROIs), such as the cheeks, to obtain an area that contains a77

strong signal. The pixels within the ROI(s) are used for rPPG signal extraction and HR is78

estimated by further post-processing, which typically involves frequency analysis and79

peak detection.80

Figure 2. General framework of conventional methods for remote HR measurement. Face detection
(e.g., Viola and Jones algorithm) is performed on the video frames, resulting in the red bounding
box on the face. Next, the ROIs (e.g., the cheeks, black bounding boxes) are selected within the
face box. The rPPG signal is extracted from the pixels within the ROI. Lastly, post-processing
techniques such as frequency analysis (e.g., Fourier transform) and peak detection are applied on
the extracted signal to estimate HR.

Like many computer vision and signal processing applications, DL methods have81

shown promise in mapping the complex physiological processes for remote HR mea-82

surement. While many review papers have discussed the conventional techniques for83

non-contact physiological monitoring [10,12,14,23], there is limited emphasis on DL84

methods, despite their popularity in the research community. The number of research85

papers utilizing DL methods for remote HR measurement has increased year after year86

and is expected to grow continuously. Our paper aims to provide researchers with87

an extensive review of DL approaches for remote HR measurement and an improved88

understanding of their benefits and drawbacks.89

In the following sections of this paper, we categorize DL approaches for remote90

HR measurement as end-to-end and hybrid DL methods. We proceed to classify them91

based on model architecture and critically analyze their methods. We then discuss the92

real-world applications that benefit from this technology and introduce some common93

resources, including toolboxes, datasets, and open challenges for researchers in this94

field. Finally, we analyze the current knowledge gaps and suggest future directions for95

research.96

2. End-to-End Deep Learning Methods97

In this section, we detail the end-to-end DL approaches for remote HR measure-98

ment. We classify a method as end-to-end if it takes in a series of video frames as input99
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and directly outputs the HR without any intermediate steps. Since many DL methods100

are designed to output the rPPG signal, these are also grouped in the same category for101

subsequent analysis (Figure 3). As shown in Table 2, the methods are further classified102

based on the type of DL technique used. While end-to-end DL methods are indisputably103

great tools due to their straightforward model optimization process, they require enor-104

mous amounts of training data and are difficult to validate. More work needs to be done105

on the interpretation of such models for translation to clinical application [25].106

Figure 3. Schematic diagram of end-to-end DL methods and hybrid DL methods. End-to-end DL
methods directly output the HR or rPPG signal with a single model while hybrid DL methods
utilize DL techniques at various stages.

2.1. 2D Convolutional Neural Network (2D CNN)107

Špetlík et al. [26] proposed an end-to-end HR estimation approach, where the108

output of the model was a single scalar value of the predicted HR. HR-CNN is a two-109

step CNN that contains an extractor and a HR estimator. The 2D CNN extractor was110

trained to maximize the signal-to-noise ratio (SNR) in order to extract the rPPG signal111

from a sequence of video frames. Then, the extracted rPPG signal was fed into the112

HR estimator to output the predicted HR value, where the training process minimized113

the mean absolute error (MAE) between the predicted and ground truth HR. Špetlík et114

al. [26] claimed that their proposed method better addressed video compression artifacts,115

where most conventional rPPG signal extraction methods fail. They validated it on116

three public datasets, and also proposed a new challenging dataset (ECG-Fitness) which117

contained different motions and lighting conditions.118

DeepPhys [27] is a VGG-style 2D CNN that jointly trained a motion and appearance119

model (Figure 4). The motion model took the normalized difference between adjacent120

frames as an input motion representation; it is built on top of the dichromatic reflection121

model for modeling motions and color changes. The appearance model guided the122

motion model to learn motion representation through an attention mechanism. The123

network learned soft-attention masks from the original video frames and allocated124

higher weights to skin areas with stronger signals. This attention mechanism also125

enabled the visualization of the spatio-temporal distribution of physiological signals.126

With the motion representation and attention mechanism, Chen and McDuff [27] claimed127

that physiological signals under different lighting conditions can be better captured,128

being more robust to illumination changes and subject motion.129

MTTS-CAN [28] is an improvement built on top of DeepPhys [27]. MTTS-CAN130

captured temporal information through the introduction of a temporal shift module131

(TSM) [29]. TSM allowed information exchange among neighboring frames and avoided132

expensive 3D convolution operations by shifting chunks in the tensor along the temporal133

axis. In addition, the input of the appearance model was a frame obtained by performing134

averaging adjacent multiple frames rather than the original video frame. Furthermore, it135

estimated HR and RR simultaneously by using a multi-task variant. Since this network136
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Figure 4. Architecture of DeepPhys [27].

was completely based on 2D CNNs, it only took 6ms per frame for on-device inference,137

which demonstrated its potential of being utilized in real time applications.138

2.2. Spatio-Temporal Network — 3D Convolutional Neural Network (3D CNN)139

As 2D CNNs only take spatial information of video frames into account, researchers140

have proposed different 3D CNN frameworks to also make use of the temporal infor-141

mation contained in the videos. These so-called spatio-temporal networks (STNs) can142

provide a more comprehensive representation of the spatial and temporal information143

of the physiological signals in the video stream.144

3D CNN PhysNet [30] is an end-to-end STN aimed at locating the peak of every145

individual heartbeat (Figure 5). It is able to estimate both HR and HRV accurately,146

allowing more complicated applications such as emotion recognition. It took the original147

RGB video frames as input and directly output the final rPPG signal. In addition, it148

utilized the negative Pearson correlation as the loss function in order to have higher149

trend similarity and fewer peak location errors.150

Figure 5. Architecture of 3D CNN PhysNet [30].

Yu et al. [31] proposed a two-stage end-to-end STN to not only estimate the rPPG151

signal but also to overcome the problem of highly compressed facial videos (Figure 6).152

Compressed facial videos were fed into a spatio-temporal video enhancement network153

(STVEN) to improve the quality of the videos while retaining as much information154

as possible. The enhanced videos were further fed into a spatio-temporal 3D CNN155

(rPPGNet) to extract the rPPG signal. Inside rPPGNet, an attention mechanism was156

applied to obtain dominant rPPG features from skin regions. rPPGNet is able to operate157

individually for rPPG signal extraction but can be trained jointly with STVEN to achieve158

better performance. Yu et al. [31] claimed that rPPGNet is able to recover better rPPG159

signals with curves and peak locations for accurate HR and HRV estimation.160

Yu et al. [32] utilized neural architecture search (NAS) to automatically find the161

best-suited backbone 3D CNN for rPPG signal extraction (Figure 7). In their research, a162

special 3D convolution operation, namely temporal difference convolution (TDC), was163
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Figure 6. Architecture used in Yu et al. [31].

designed to help track the ROI, and improve the robustness in the presence of motion164

and poor illumination. Then, NAS was performed based on two gradient-based NAS165

methods [33,34] in order to form a backbone network for rPPG signal extraction. Two166

data augmentation methods were proposed as well in order to prevent data scarcity.167

Figure 7. Architecture of AutoHR [32].

Hu et al. [35] designed a novel facial feature extraction method in order to avoid168

extracting redundant information from video segments and to enhance long-range video169

temporal modeling. A 3D CNN was used to extract facial features of the input video170

frames. Next, aggregation functions were applied to incorporate long-range spatio-171

temporal feature maps into short segment spatio-temporal feature maps. These feature172

maps were then fed into a signal extractor with several spatio-temporal convolution [36]173

to extract the rPPG signal. A spatio-temporal strip pooling method and an attention174

mechanism were further applied to the extracted rPPG signal to accommodate head175

movement and avoid ignoring important local information.176

Zhang et al. [37] proposed an efficient multi-hierarchical convolutional network177

to perform estimation quickly, where only 15 seconds of face video was required for178

effectively reconstructing the rPPG signal and estimating HR. A three-layer 3D CNN179

was used to extract low-level facial feature maps from RGB face videos. These feature180

maps were passed to a spatio-temporal stack convolution module for deeper feature181

extraction and generation of a high-level feature map. Channel-wise feature extraction182

was then performed on the high-level feature map to produce a channel-wise feature183

map. A skin map was also generated based on low-level feature maps for emphasizing184

skin regions with stronger signals. Next, a weight mask was constructed by performing185

feature fusion on the skin map and the channel-wise feature map. Finally, the high-level186

feature map was multiplied by the weight mask by channels and was fed into a rPPG187

signal extractor.188

ETA-rPPGNet [38] is another network aimed at dealing with the problem of extract-189

ing redundant video information (Figure 8). In this network, a time-domain segment190

subnet was designed to model the long-range temporal structure of the video. Split191

video segments were passed to different subspace networks of this subnet to extract192

facial features. Then, an attention mechanism was applied to learn important spatial193

features. Next, an aggregation function was used to aggregate the temporal context in194

order to cut down redundant video information and a feature map was obtained in each195

individual subspace network. These individual feature maps were concatenated and fed196

into the backbone network for rPPG signal extraction. Inside the backbone network, an197
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attention module was also added for eliminating different noise (e.g. head movement,198

illumination variation). Finally, the extracted rPPG signal was further processed by a 1D199

convolution operation to model the correlation held in the local time domain effectively.200

Figure 8. Architecture of ETA-rPPGNet [38].

2.3. Spatio-Temporal Network — 2D Convolutional Neural Network + Recurrent Neural201

Network (2D CNN + RNN)202

Researchers have also designed another type of spatio-temporal network, which is203

the combination of 2D CNN for spatial information and RNN for temporal context.204

In the same work of [30], a different version of PhysNet, which combined a 2D205

CNN with different RNNs (LSTM, BiLSTM, ConvLSTM [39]) was proposed to compare206

the performance of 3D CNN-based PhysNet and RNN-based PhysNet, and evaluate207

the performance of different RNNs (Figure 9). The input and output of the network208

remained the same as for the 3D CNN PhysNet. The input was firstly fed into a 2D CNN209

to extract spatial features of the RGB video frames; then the RNN was used to propagate210

these spatial features in the temporal domain. In their research, 3D CNN-based PhysNet211

achieved a better performance than RNN-based PhysNet, and the BiLSTM variant had212

the worst performance, indicating the backward information flow of spatial features was213

not necessary. Table 1 shows the performance of different versions of PhysNet in terms214

of root mean square error (RMSE) and Pearson correlation coefficient (R) [30].215

Figure 9. Architecture of RNN-based PhysNet [30].

Table 1. Performance of different versions of PhysNet [30] on the OBF [40] dataset. Root mean square error (RMSE) in beats per
minute (bpm) and Pearson correlation coefficient (R) were used as the evaluation metrics.

3D CNN based LSTM variant BiLSTM variant ConvLSTM variant

RMSE = 2.048, R = 0.989 RMSE = 3.139, R = 0.975 RMSE = 4.595, R = 0.945 RMSE = 2.937, R = 0.977

In [41], another combination of 2D CNN with a ConvLSTM network with attention216

mechanism was proposed for rPPG signal extraction. The 2D CNN part had a similar217

approach as DeepPhys [27], which consisted of a trunk branch and a mask branch. The218

trunk branch was used to extract spatial features from a sequence of face images while219

the mask branch learned and generated attention masks, and passed them to the trunk220
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branch to guide feature extraction. These spatial features were then fed into a ConvLSTM221

network in order to make use of the temporal correlation held in video frames for rPPG222

signal extraction.223

Table 2. Summary of end-to-end DL methods for remote HR measurement

Ref. Year 2D CNN 3D CNN 2D CNN + RNN NAS Attention

[26] 2018 X
[27] 2018 X X
[28] 2020 X X
[30] 2019 X X
[31] 2019 X X
[32] 2020 X X
[35] 2021 X X
[37] 2021 X
[38] 2021 X X
[41] 2019 X X

3. Hybrid Deep Learning Methods224

In this section, we describe hybrid DL methods for remote HR measurement. For225

hybrid DL methods, DL techniques are only applied in some parts of the pipeline. We226

further indicate whether the methods are used for signal optimization, signal extraction227

or HR estimation (Figure 3).228

3.1. Deep Learning for Signal Optimization229

In most existing remote HR measurement pipelines, the input is the original video230

recorded by a digital camera. Therefore, face detection or skin segmentation is needed231

to ignore irrelevant background information. Moreover, some specific skin regions like232

the cheeks contain stronger signals and are usually selected as the ROI [42]. In this233

subsection, we describe these DL-based signal optimization methods to enable more234

effective signal extraction.235

In [43], a 2D CNN for skin detection was created and trained on a private video236

database. Both skin and non-skin region samples were manually segmented and treated237

as positive and negative samples respectively. Conventional rPPG algorithms (ICA and238

PCA) were then performed on the detected skin region for evaluation. Tang et al. [43]239

suggested that low-cost cameras could capture rPPG signals with their method, which240

worked on single-channel input by choosing the RGB channel with the least noise under241

different conditions. This method could be combined with traditional rPPG methods in242

order to improve their performance. However, it utilized all the skin areas of the face for243

rPPG signal extraction, which may include unnecessary noise. Moreover, their method244

was only validated on a private dataset with yellow skin tones.245

In [44], a single-photon avalanche diode (SPAD) camera was used to record videos.246

This camera was able to work well in dark environments. The recorded frame was a247

low-resolution grayscale image. A 2D CNN encoder-decoder model took this as input248

and produced a single channel image with values between zero and one, representing249

the probability that the particular pixel was regarded as skin. In addition, a transfer250

learning approach was adopted in the training process due to the lack of data for this251

specific skin detection problem. The model was trained on a large dataset of unlabeled252

face images for colorization and then further trained on a skin mask dataset. Finally, a253

binary skin mask was obtained by thresholding and passed for signal extraction.254
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In Deep-HR [45], a receptive field block (RFB) network was utilized to detect255

the ROI as an object [46]. This network was trained on a private dataset with videos256

recorded in realistic settings to improve overall robustness. Furthermore, a generative257

adversarial network (GAN)-style module was designed to enhance the detected ROI.258

A CNN that learned the distribution of high-quality ROIs acted as a discriminator to259

supervise another deep encoder-decoder network that served as a generator to regenerate260

the detected ROI. This high-quality detected ROI was passed for subsequent signal261

extraction. The architecture used for signal optimization in Deep-HR [45] is illustrated262

in Figure 10.263

Figure 10. Architecture used in Deep-HR [45] for signal optimization.

3.2. Deep Learning for Signal Extraction264

Signal extraction is the most important part in the remote HR measurement pipeline,265

and it is the leading focus in this research field. Its principal goal is to extract the rPPG266

signal from videos for HR estimation. In addition, refining the extracted rPPG signal267

for better HR estimation is a method to improve the estimation accuracy. Researchers268

have proposed many different DL methods for obtaining a high-quality rPPG signal,269

and we are going to categorize and describe them based on the type of neural network270

being used. Table 3 shows neural networks used in different DL-based signal extraction271

methods.272

3.2.1. Long Short-Term Memory (LSTM)273

In [47,48], a LSTM network was applied for signal filtering, improving the quality274

of the extracted rPPG signal. As the rPPG signal extracted by conventional methods may275

contain several noise, filtering the noise-contaminated rPPG signal is able to produce276

a noiseless rPPG signal for more accurate HR estimation. The LSTM network in [47]277

was firstly trained on a large amount of synthetic data. Then, it was further trained on278

real data for model fine-tuning, enhancing its generalization ability. This method is able279

to effectively overcome the problem of data shortage. The architecture used for signal280

filtering in [47] is shown in Figure 11.281

Figure 11. Architecture used in Bian et al. [47].

3.2.2. 2D Convolutional Neural Network (2D CNN)282

In Deep-HR [45], a 2D CNN was learned to extract color information of the ROI283

pixels (Figure 12). Noise was further removed from the extracted information by using a284

GAN-style module. A discriminator that accesses high-quality rPPG signals was used to285

guide a generator to reconstruct a noiseless rPPG signal. This noise removing technique286

can be applied in other rPPG methods to improve the performance as well.287

MetaPhys [49] utilized a pretrained 2D CNN, namely TS-CAN, which was another288

version of MTTS-CAN [28] for signal extraction. The difference between them was the289

use of the multi-task variant so TS-CAN could only estimate HR and RR one at a time290
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Figure 12. Architecture used in Deep-HR [45] for signal extraction.

while MTTS-CAN could estimate HR and RR simultaneously. Furthermore, a meta-291

learning approach was proposed for better generalization of the model. Model-Agnostic292

Meta-Learning (MAML) [50] was utilized as the personalized parameter update schema293

to produce a general initialization so that fast adaptation could be performed when only294

a few training samples were available. In addition, both supervised and unsupervised295

training methods were evaluated on MetaPhys. Liu et al. [49] claimed that this approach296

can reduce bias due to skin tone, improving the robustness of the model.297

3.2.3. Spatio-Temporal Network — 3D Convolutional Neural Network (3D CNN)298

In [51], a 3D CNN was designed to extract features from unprocessed video streams,299

followed by a multilayer perceptron to regress HR. In the paper, a data augmentation300

method was also proposed for generating realistic videos effectively with synthetic rPPG301

signals. The synthetic rPPG signal was transformed to a video by using vector repetition.302

Noise was also added to the synthetic videos in order to make them realistic.303

Siamese-rPPG [52] is a framework based on a Siamese 3D CNN (Figure 13). The304

idea behind this framework is different facial regions may suffer from different noise and305

have their own appearances. However, they should reflect more or less the same rPPG306

characteristics. Therefore, the forehead and cheek regions with more rPPG information307

were firstly selected as the ROI. Next, pixels in these two ROIs were passed to the308

forehead branch and the cheek branch for extraction, respectively; both were 3D CNNs309

with the same architecture. Weight sharing mechanism was also applied to these two310

branches so even if either the cheek or forehead region was contaminated with noise,311

the framework could use the other region for signal extraction, improving the overall312

robustness. After that, the outputs from these two branches were fused by an addition313

operation, followed by two 1D convolutional operations and an average pooling, to314

produce the predicted rPPG signal.315

Figure 13. Architecture of Siamese-rPPG [52].
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HeartTrack [53] utilized a 3D CNN with attention mechanism for signal extraction.316

In this 3D spatio-temporal attention network, a hard attention mechanism was used317

to help the network ignore unrelated background information and a soft attention318

mechanism was used to help the model filter out covered areas. The extracted signal319

was further fed into a 1D CNN for time series analysis. Synthetic data was also used in320

the training process in order to address the problem of inadequate real data.321

In [54], a multi-task framework was proposed for learning a rPPG signal extraction322

model and augmenting data simultaneously. There were a total of 3 main networks in323

this framework. The first one was a signal extractor that directly extracted the rPPG324

signal from the input facial videos. The second one was a reconstruction network for325

generating synthetic videos from real images. The third one was also a reconstruction326

network for generating synthetic videos from real videos. They were designed to support327

each other, and these two reconstruction networks could effectively handle the problem328

of insufficient training data and improve the overall robustness.329

DeeprPPG [55] is a framework that can use different skin regions as the input for330

rPPG signal measurement, allowing customized ROI selection and wider applications.331

It took a skin region clip from the original video as the input and a spatio-temporal332

network was utilized to extract the rPPG signal. A spatio-temporal aggregation function333

was also proposed for easing the side effect of regions contaminated by different noise334

and improving the robustness of the model.335

3.2.4. Spatio-Temporal Network — 2D Convolutional Neural Network + Recurrent336

Neural Network (2D CNN + RNN)337

In [56], a two-stream approach was adopted for feature extraction and rPPG signal338

extraction. For the feature extraction stream, a 2D CNN with low-rank constraint loss339

function was proposed to force the network to learn synchronized spatial features from340

spatio-temporal maps, improving the robustness of face detection and ROI alignment341

errors. For the rPPG signal extraction stream, a 2D CNN was firstly used to extract the342

rPPG signal and then the rPPG signal was further refined by a two-layer LSTM network.343

Lastly, the outputs from these two streams were concatenated for HR estimation.344

In [57], a 2D CNN was used to extract spatial features and local temporal informa-345

tion, and a LSTM network was utilized for extracting global temporal information held346

in consecutive frames. One fully connected layer was further applied to the output of347

the LSTM to estimate HR. This framework was able to overcome processing latency and348

update HR in about 1 second, showing the potential of being adopted in real-time HR349

monitoring.350

Meta-rPPG [58] utilized a transductive meta-learner to take unlabeled data during351

deployment for self-supervised weight adjustment, allowing fast adaptation to different352

distribution of samples (Figure 14). In this framework, a ResNet-alike convolutional353

encoder was firstly used to extract latent features from a stream of face images. Next,354

these extracted features were passed to a BiLSTM network to model the temporal context,355

followed by a multilayer perceptron (MLP) for rPPG signal estimation. A synthetic356

gradient generator was also proposed for transductive learning. It was based on a357

shallow Hourglass network [59] and further applied to a few-shot learning framework358

in order to generate gradients for unlabeled data [60].359

3.2.5. 3D Convolutional Neural Network + Recurrent Neural Network (3D CNN +360

RNN)361

PRNet [61] is a one-stage spatio-temporal framework for HR estimation from362

stationary videos (Figure 15). Firstly, a 3D CNN extractor was utilized to extract spatial363

features and capture local temporal features from the defined ROI. Next, the output364

feature map was further fed into a LSTM extractor for extracting global temporal features.365

Lastly, a fully connected layer was applied to estimate HR from the extracted feature366

map. Huang et al. [61] claimed that this framework is able to predict HR with only 60367
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Figure 14. Architecture of Meta-rPPG [58].

frames of the video (2s) while other remote HR estimation methods usually need 6-30s368

of the video.369

Figure 15. Architecture of PRNet [61].

3.2.6. Generative Adversarial Network (GAN)370

PulseGAN [62] is a framework based on GAN to generate realistic rPPG signals371

(Figure 16). In the paper, a rough rPPG signal was firstly obtained by applying the372

CHROM algorithm on the defined ROI. Then, PulseGAN took this as input and gen-373

erated a high-quality, realistic rPPG signal for performing HR estimation accurately.374

Moreover, the structure of PulseGAN was based on the conditional GAN approach [63].375

The discriminator accessed the ground truth rPPG signal and guided the generator to376

map a rough rPPG signal extracted by CHROM to a final rPPG signal that is similar377

to the ground truth one. The rough rPPG signal was also set as a condition in the378

discriminator. Song et al. [62] mentioned that this framework can be combined with379

other conventional rPPG methods easily in order to improve the quality of the extracted380

rPPG signal, resulting in more accurate HR estimation.381

Figure 16. Architecture of PulseGAN [62].
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Table 3. Summary of hybrid DL methods for signal extraction in remote HR measurement pipeline

Ref. Year LSTM 2D CNN 3D CNN 2D CNN + RNN 3D CNN + RNN GAN

[47] 2019 X
[48] 2020 X
[45] 2020 X X
[49] 2021 X
[51] 2019 X
[52] 2020 X
[53] 2020 X
[54] 2020 X
[55] 2020 X
[56] 2019 X
[57] 2020 X
[58] 2020 X
[61] 2021 X
[62] 2021 X

3.3. Deep Learning for Heart Rate Estimation382

Traditionally, the extracted rPPG signal can be filtered with a bandpass filter fol-383

lowed by frequency analysis or peak detection to estimate HR. However, HR estimation384

can also be classified as a regression problem and solved by DL methods. Moreover, dif-385

ferent representations of the HR signal have been proposed for DL-based HR estimation.386

In [64], the rPPG signal was extracted by conventional methods (e.g., ICA, PCA,387

CHROM), and short-time Fourier transform and bandpass filtering were applied to the388

extracted rPPG signal to obtain a frequency domain representation. This representation389

was further combined with the time domain signal to form a spectrum image, a kind of390

HR signal representation. Lastly, an HR estimator based on ResNet18 [65] pretrained391

with the ImageNet dataset was used to estimate HR from spectrum images directly.392

Based on this method, HR can be estimated accurately regardless of which conventional393

methods were used, since the HR estimator can learn features in spectrum images and394

directly map them into HR. The architecture used for HR estimation in [64] is illustrated395

in Figure 17.396

Figure 17. Architecture used in Yang et al. [64].

Another type of HR signal representation is the spatio-temporal map (Figure 18)397

used for HR estimation in [66–71]. Generally, an ROI selection step was involved in the398

construction of these spatio-temporal maps. Color information of the RGB channels of399

the ROI pixels was utilized and concatenated in temporal sequences, and placed into400

rows to form a spatio-temporal map. Finally, a neural network was used to estimate HR401

from spatio-temporal maps directly. Such kind of HR signal representation can highlight402

the HR signal and suppress the information that is unrelated to the HR signal. In [66,69],403

transfer learning was applied to pretrain the HR estimator with the ImageNet dataset to404

deal with insufficient data. In [67], a combination of 2D CNN and gated recurrent unit405

(GRU) was used for HR estimation (Figure 19). In [70], NAS was also utilized to find a406
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lightweight and optimum CNN to estimate HR from spatio-temporal maps. In [71], an407

attention module was added to mitigate the effect of different noise.408

Figure 18. General procedure of constructing a spatio-temporal map. Firstly, the images are
aligned and ROI selection is performed to obtain ROI images. Then, these ROI images are divided
into several ROI blocks. Next, within each block, the average color value is calculated for each
color channel. After that, the average color value of each channel at the same block but different
frames are concatenated into temporal sequences. Finally, the temporal sequences of each block
are placed into rows to form a spatio-temporal map.

Figure 19. Architecture of RhythmNet [67].

HR estimation can be treated as a regression problem by using simple fully-409

connected layers or feedforward neural networks. In [45,56,57,61], HR was regressed410

by fully-connected layers from the extracted rPPG signal. The architecture used for HR411

estimation in [57] is shown in Figure 20. In [51,53], feedforward neural networks were412

also utilized to estimate HR from the extracted features.413

Figure 20. Architecture used in Huang et al. [57].
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Table 4. Summary of all mentioned end-to-end and hybrid DL methods for remote HR measurement.

Ref. Year End-to-End/Hybrid Description

[26] 2018 End-to-End End-to-end HR estimation with an extractor and an estimator
[27] 2018 End-to-End Normalized frame difference as motion representation,

attention mechanism was used to guide the motion model,
visualization of spatio-temporal distribution of physiological signals

[43] 2018 Hybrid 2D CNN network for skin detection
[64] 2018 Hybrid Spectrum images were used for HR estimation
[66] 2018 Hybrid Spatio-temporal maps were used for HR estimation,

transfer learning approach to deal with data shortage
[30] 2019 End-to-End Compared 3D CNN based and RNN based spatio-temporal network,

can estimate HR and HRV accurately
[31] 2019 End-to-End Enhancing video quality to deal with highly compressed videos,

can estimate HR and HRV accurately
[41] 2019 End-to-End Attention mechanism was used to guide the trunk branch for signal extraction
[47] 2019 Hybrid LSTM network for signal filtering,

transfer learning approach to deal with data shortage
[51] 2019 Hybrid 3D CNN for signal extraction,

data augmentation method for generating videos with synthetic rPPG signals,
multilayer perceptron for HR estimation

[56] 2019 Hybrid 2D CNN based two-stream approach for signal extraction,
and LSTM network for signal refining

[71] 2019 Hybrid Spatio-temporal maps were used for HR estimation,
attention mechanism was applied to remove noise

[28] 2020 End-to-End Temporal shift module to model temporal information,
attention mechanism was applied to guide the motion model,
able to estimate HR and RR simultaneously by one network

[32] 2020 End-to-End Used NAS to find a well-suited network for HR estimation
[44] 2020 Hybrid 2D CNN encoder-decoder model for skin detection,

transfer learning approach to deal with data shortage
[45] 2020 Hybrid Two GAN-style modules to enhance the detected ROI and remove noise,

2D CNN for signal extraction
[48] 2020 Hybrid LSTM network for signal filtering
[52] 2020 Hybrid Siamese 3D CNN for signal extraction
[53] 2020 Hybrid 3D CNN with attention mechanism for signal extraction,

feedforward neural network for HR estimation
[55] 2020 Hybrid 3D CNN that can take different skin regions for signal extraction
[57] 2020 Hybrid 2D CNN + LSTM spatio-temporal network for signal extraction
[58] 2020 Hybrid 2D CNN + BiLSTM spatio-temporal network for signal extraction,

meta-learning approach for fast adaptation
[67] 2020 Hybrid Spatio-temporal maps were used for HR estimation
[68] 2020 Hybrid Spatio-temporal maps were used for HR estimation
[69] 2020 Hybrid Spatio-temporal maps were used for HR estimation,

transfer learning approach to deal with data shortage
[35] 2021 End-to-End Avoid extracting redundant information from video segments,

attention mechanism was applied to deal with different noise
[37] 2021 End-to-End An efficient framework for performing HR estimation quickly
[38] 2021 End-to-End Dealt with the problem of extracting redundant video information,

attention mechanism was applied to learn important features and eliminate noise
[49] 2021 Hybrid TS-CAN from another paper was utilized for signal extraction,

meta-learning approach for fast adaptation
[54] 2021 Hybrid Multi-task framework for simultaneous signal extraction and data augmentation
[61] 2021 Hybrid 3D CNN + LSTM spatio-temporal network for signal extraction
[62] 2021 Hybrid GAN for generating high-quality rPPG signal from rough rPPG signal
[70] 2021 Hybrid Spatio-temporal maps were used for HR estimation,

NAS was used to find a CNN for mapping spatio-temporal maps into HR
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4. Applications414

With further research and inevitable technological advances, remote health moni-415

toring technology will undoubtedly play a vital role in many aspects. The utilization of416

contactless HR monitoring introduces benefits that existing contact-based PPG meth-417

ods lack. In this section, we describe a few potential applications enabled by remote418

monitoring of physiological signals.419

4.1. Affective Computing420

Since rPPG technology can be integrated with consumer-level cameras, it has421

great potential for affective computing and human–computer interaction applications.422

Researchers have demonstrated the feasibility of rPPG-based methods for interpreting423

human affects such as cognitive stress estimation [72,73], emotion recognition [30,74],424

engagement detection [75] and pain recognition [76–78]. These studies illustrate the425

capability of using rPPG technology beyond the medical domain.426

4.2. Pandemic Control427

With the current COVID-19 outbreak, the value of contactless HR monitoring has428

become very clear, particularly for screening the public. It has been reported that tem-429

perature screening alone is an insufficient indication for coronavirus infection [79,80].430

Therefore, the accuracy of screening based on temperature decreases because asymp-431

tomatic but infected patients haev a temperature within the normal range [81,82]. Given432

this inadequacy, using HR as a criterion for COVID-19 screening was investigated.433

In [83,84], it was shown that tachycardia(high HR) is also a symptom of COVID-19.434

Moreover, the relationship between atrial fibrillation (AF) and COVID-19 was observed435

in several studies [85–87], suggesting rPPG-based AF detection would be useful for436

discovering potential COVID-19 patients [88]. Meanwhile, during and since the pan-437

demic, the use of wearable smart devices for measuring vital signs such as HR, BP, and438

SpO2, have become widespread [89,90]. Such contact-based methods can be replaced by439

rPPG technology to provide convenience to users with precise screening and detection,440

resulting in more efficient and effective pandemic control.441

4.3. Deepfake Detection442

Recently, deepfake, a technology to produce high-synthetic videos with DL imple-443

mentations, has attracted researchers’ attention. Unfortunately, if not tragically, this444

technology has been used to generate fake news and hoax videos, posing threats to the445

society. For example, a high-quality video of the 44th President of the United States446

Barack Obama has been synthesized by using a DL approach [91], which shows him447

apparently making a speech that he never actually made. These fake videos are of448

such high quality such that they are indistinguishable to humans and even complicated449

computer vision algorithms [92–94]. As a result, deepfake detection methods need to450

be developed to encounter such problems. Currently, there have been few attempts451

in capturing abnormalities in biological signals like HR as a means to detect deepfake452

videos [95,96].453

4.4. Telehealth454

Within the last few years, telehealth has become more popular all over the world,455

with more than half of the health care organizations in the U.S making use of the ser-456

vice. [97]. The integration of telehealth with rPPG technology provides various benefits457

to the users and society. For instance, users will experience a better daily workflow458

since the time required to travel to healthcare institutions for health-checkups and for459

doctor consultations will be reduced. Furthermore, the application of telehealth software460

intertwined with rPPG technology allows the user to measure their physiological signs461

and detect early symptoms of different health problems (e.g. atrial fibrillation) from462

any location by using a consumer-level device [88,98,99]. Deploying rPPG technology463
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promotes social distancing and safety for those healthcare workers at the front lines. Fur-464

thermore, remote health monitoring can reduce the workload of hospitals and minimize465

the chance of spreading diseases since it encourages less physical contact with patients466

and fewer human resources are needed [100], which is especially vital during the midst467

of a pandemic.468

4.5. Face Anti-spoofing469

Nowadays, using biometric information of individuals for authentication is very470

common. One of the most common forms is facial recognition, which is based on the471

analysis of unique features of a person’s face [101]. However, biometric presentation472

attacks can exist alongside the face authentication process. For example, attackers473

can source photos (photo attacks) or videos (replay attacks) of the person from social474

networking sites easily and present them to the authentication system [102]. Remote HR475

measurement technology can be incorporated to enhance the authentication system [103].476

In [104–108], rPPG-based face presentation attack detection approaches were developed,477

suggesting the potential of rPPG technology in the security industry.478

4.6. Driving Condition Monitoring479

In order to reduce the number of traffic accidents, rPPG technology can be adopted480

to monitor drivers and track a driver’s physiological status. Most road accidents are481

caused by human factors including fatigue, drowsiness, and illness. Factors such as482

disparity in oxygen levels, HR, and RR may lead to non-specific health problems, which483

interfere with or degrade decision-making capabilities. This monitoring allows abnormal484

vital signs to be detected early, with alerts shown immediately so that drivers can adjust485

their behavior accordingly, avoiding accidents. There have been several attempts for486

monitoring drivers’ physiological conditions using rPPG methods [109–118]. In [112,487

116,118], a near-infrared camera was used instead of an RGB camera for monitoring.488

In [113,115], neural networks were applied for physiological signal estimation.489

4.7. Searching for Survivors during Natural Disasters490

During natural disasters like earthquakes and fires, searching for survivors becomes491

a vital but extremely challenging task. Rescue teams must operate in extremely haz-492

ardous conditions like collapsed buildings. rPPG technology can be a potential way to493

reduce risk for search and rescue teams, and improve their efficiency. In [119–121], an494

unmanned aerial vehicle (UAV) or a drone was used to capture videos, representing a495

more convenient, safe, and effective way to look for survivors. In [122], research using a496

drone for multiple subject detection over a long-distance was conducted. This illustrates497

the potential of using controllable devices equipped with a camera combined with rPPG498

technology for searching for survivors.499

4.8. Neonatal Monitoring500

As neonates or infants have very sensitive and fragile skin, using contact-based501

methods to measure their health conditions is inappropriate. rPPG methods are one502

of the suitable candidates for long-term physiological status monitoring of newborns503

in neonatal intensive care units (NICU). Several studies have trialed rPPG methods504

for such monitoring [123–133]. In [132], DL-based segmentation was utilized to reduce505

computational time, which brought it one step closer to real-time applications. In [133],506

DL-based ROI detection was applied to handle pose variations and illumination changes,507

further improving the estimation accuracy. These examples indicate the promise of using508

rPPG technology for neonatal monitoring.509

4.9. Fitness Tracking510

During fitness training, having health monitors to keep track of the current physio-511

logical condition is an excellent way to prevent over-exercising and help to adjust the512
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fitness process to an individual’s real-time needs and condition. Contact-based methods513

such as smartwatches or digital bracelets for such monitoring can cause discomfort or514

pain during heavy exercise. rPPG technology can be utilized to provide simple remote515

fitness tracking. In [134–138], rPPG methods in fitness training settings were studied.516

In [134,137,138], motion artifact during exercise was the major focus. In [135,136], a feed-517

back control system was implemented as well for adjusting the speed of the treadmill518

automatically.519

5. Resources520

As remote physiological monitoring is an emerging field in computer vision and521

biomedical engineering, there are resources available for researchers to accelerate progress522

and ease the transition of newcomers. In this section, we detail some of the open-source523

toolboxes to help to implement related algorithms and most of the datasets that are524

commonly used for model training and benchmarking. Furthermore, open challenges in525

rPPG are also described to encourage various researchers to contribute to the field.526

5.1. Toolboxes527

iPhys [139] is an open-source toolbox written in MATLAB. It contains commonly528

used implementations in rPPG pipelines like face detection, ROI definition, and skin529

segmentation. It also includes four conventional rPPG methods for baseline compar-530

ison. Other plotting and signal quality calculation functions are provided as well for531

performance evaluation.532

In [140], the whole rPPG pipeline based on ICA and some utilities are written in533

MATLAB. Beginners can quickly run or even modify the provided script to evaluate the534

performance of the particular rPPG method.535

The Python tool for Virtual Heart Rate (pyVHR) [141] is a recently developed536

Python package for heart rate estimation based on rPPG methods. In this package, 8537

conventional rPPG methods are implemented and evaluated based on 5 datasets. Other538

frequently used pre-processing and post-processing techniques are provided as well.539

Practitioners can extend the framework to evaluate their own algorithms on these 5540

datasets.541

5.2. Datasets542

Performance evaluation is important for researchers to test whether their proposed543

methods are good enough when compared with other methods and able to solve existing544

challenges. For supervised methods, datasets are also crucial for proper training and545

achieving state-of-the-art performance. In this subsection, we detail most of the datasets546

that are commonly used for benchmarking and model training.547

AFRL [142] is a dataset proposed by the United States Air Force Research Laboratory.548

It was aimed to evaluate the effect of head motion artifacts. During data acquisition, a549

multi-imager semicircular array (a total of 9 synchronized, visible spectrum imagers)550

centered on the imaged participant in a controlled light environment was used to record551

the participant’s head motions during specific tasks. At the same time, electrocardiogram552

(ECG) and fingertip reflectance PPG were recorded as ground truth signals. The imaged553

participant was told to perform specific tasks, which included staying still, sweeping554

around the imagers with a pre-defined angle per second, and randomly re-orienting the555

head position to an imager. The background of the environment consisted of either a556

solid black fabric or a patterned, colored fabric.557

COHFACE [143] is a publicly available dataset proposed by the Idiap Research558

Institute. The purpose of proposing this dataset was to allow researchers to evaluate559

their developed rPPG algorithms on a publicly available dataset so that comparisons560

between different algorithms could be conducted in a standard and principled manner.561

In this dataset, a conventional webcam was used to capture the full face of the participant562

in two different illumination settings (studio lighting and natural lighting) to evaluate563
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the effect of illumination variation. Skin reflectance PPG and respiratory signal were564

recorded as ground truth signals. The only disadvantage of this dataset was the heavy565

compression, so noise artifact was added unavoidably.566

MAHNOB-HCI [144] is a multimodal dataset that was originally recorded for567

emotion recognition and implicit tagging research. However, as ground truth signals like568

ECG and respiration amplitude were recorded, it was also suitable for rPPG algorithm569

evaluation. Moreover, six cameras were used to capture different views (frontal view,570

profile view, wide angle, close ups) of the participant, which made this dataset useful for571

evaluating the algorithm when pose angle varied.572

MMSE-HR [145] is another multimodal dataset proposed for facial expression573

analysis. Some vital signs like BP, RR, and HR were also recorded, making this dataset574

appropriate for testing rPPG algorithms. Furthermore, subjects from different races575

(Black, White, Asian, Hispanic/Latino) participated in the data acquisition so researchers576

were able to evaluate their proposed methods against different skin tones.577

OBF [40] is a large dataset made by the University of Oulu in Finland specifically for578

remote physiological signal measurement. Aside from healthy subjects in this dataset,579

patients with atrial fibrillation (AF) also participated in data collection in order to validate580

rPPG methods for clinical applications like diagnosing cardiac diseases. In addition,581

there were two different recording states, one for healthy participants and one for AF582

patients. Healthy participants were recorded in a resting state and a post-exercise state (5583

minutes exercise). AF patients were recorded before and after cardioversion treatment.584

PURE [146] is a dataset proposed for examining head motion artifacts in rPPG585

methods in more detail. During data acquisition, participants were told to perform six586

different tasks (holding steady, talking, slow translation, fast translation, small rotation,587

medium rotation) in order to introduce different kinds of head motion. Naturally588

changing illumination (daylight with clouds through a large window) was used for589

recording as well.590

UBFC-RPPG [147] is another dataset proposed mainly for rPPG algorithm evalu-591

ation. The data recording was conducted indoors with indoor illumination and slight592

changes in sunlight. One special aspect of the recording is that participants were told593

to play a time-sensitive mathematical game. Its purpose was to augment the HR of594

participants and hence simulate a real-life human-computer interaction scenario for595

evaluation.596

VIPL-HR [148] is a large-scale multimodal dataset created for remote pulse esti-597

mation research. In this dataset, various face variations due to head motion (stable,598

large motion, talking), illumination changes (lab, dark, bright) and acquisition diversity599

(smartphone, webcam, RGB-D camera) were introduced in order to test the overall600

robustness of the proposed algorithm. The dataset was compressed with different codecs601

(MJPG, FMP4, DIVX, PIM1, X264) in order to retain the completeness of the signals as602

much as possible while being convenient for public access at the same time.603

A summary of the mentioned datasets is provided in Table 5. Moreover, Table 6604

illustrates the performance of all mentioned DL methods on these common datasets.605

The evaluation metrics in Table 6 include root mean square error (RMSE) in bpm, mean606

absolute error (MAE) in bpm, Pearson correlation coefficient (R), and signal-to-noise607

ratio (SNR) in decibels (dB).608

5.3. Open Challenge on Remote Physiological Signal Sensing609

Creating an open challenge on a specific machine learning task is a common way in610

the field of machine learning to encourage people to participate and solve a particular611

problem using DL methods. One of the most famous open challenges is the ImageNet612

Large Scale Visual Recognition Challenge (ILSVRC) [149]. This challenge has been613

running annually for 8 years (2010-2017), and its focuses are object recognition, object614

detection, and image classification. Many DL methods have been proposed for this task,615

and this competition has definitely boosted research interest in this field, allowing rapid616
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development in DL-based computer vision. An open challenge on remote physiological617

signal sensing was also organized in 2020, namely Remote Physiological Signal Sensing618

(RePSS 2020) [150]. In this challenge, the focus was measuring the average HR from color619

facial videos. The VIPL-HR-V2 dataset, which is the second version of VIPL-HR [148]620

and the OBF dataset [40] were used for model training and testing. The RePSS 2021621

is also currently running, and its focus was changed to measure inter-beat-interval622

(IBI) curve and RR. This open challenge can have the same optimistic effect as ILSVRC,623

encouraging people to participate and engage in this research field.624

Table 5. Summary of common datasets for remote physiological monitoring.

Dataset Subjects Description

AFRL [142] 25 9 RGB cameras with 120 fps,
resolution is 658x492,

ECG, PPG, RR are recorded
COHFACE [143] 40 1 RGB webcam with 20fps,

resolution is 640x480,
BVP, RR are recorded

MAHNOB-HCI [144] 27 1 RGB camera with 60 fps,
5 monochrome cameras with 60 fps,

both resolution are 780x580,
ECG, RR are recorded

MMSE-HR [145] 140 1 3D stereo imaging sensor with 25fps,
1 2D video sensor with 25fps,
1 thermal sensor with 25fps,

RGB sensor resolution is 1040x1392,
thermal sensor resolution is 640x480,

HR, RR, BP are recorded
OBF [40] 106 (6 with atrial fibrillation) 1 RGB camera with 60fps,

1 NIR camera with 30 fps,
RGB camera resolution is 1920x1080,

NIR camera resolution is 640x480,
ECG, BVP, RR are recorded

PURE [146] 10 1 RGB camera with 30 fps,
resolution is 640x480,

HR, SpO2, PPG are recorded
UBFC-RPPG [147] 42 1 RGB webcam with 30 fps,

resolution is 640x480,
HR, PPG are recorded

VIPL-HR [148] 107 1 RGB webcam with 25 fps,
1 RGB-D camera with 30 fps,

1 smartphone camera with 30 fps,
RGB webcam resolution is 960x720,

RGB-D NIR camera resolution is 640x480,
RGB-D RGB camera resolution is 1920x1080,
smartphone camera resolution is 1920x1080,

HR, SpO2, BVP are recorded
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Table 6. Performance of all mentioned end-to-end and hybrid DL methods for HR measurement on commonly used datasets listed in
Table 5. [43], [44] and [57] are not included here as they are evaluated on their own private datasets.

Methods AFRL COHFACE MAHNOB-HCI MMSE-HR OBF PURE UBFC-RPPG VIPL-HR

[26] X RMSE = 10.78 RMSE = 9.24 X X RMSE = 2.37 X X
MAE = 8.10 MAE = 7.25 MAE = 1.84

R = 0.29 R = 0.51 R = 0.98
[27] MAE = 2.45 X MAE = 4.57 X X X X X

SNR = 4.65 SNR = -8.98
[64] X X RMSE = 4.26 X X X X X

R = 0.81
[66] X X RMSE = 4.49 RMSE = 6.83 X X X X
[30] X X RMSE = 7.88 X RMSE = 1.812 X X X

MAE = 5.96 R = 0.992
R = 0.76

[31] X X RMSE = 5.93 X RMSE = 1.8 X X X
MAE = 4.03 R = 0.992

R = 0.88
[41] X RMSE = 11.88 X X X RMSE = 1.58 X X

MAE = 7.31 MAE = 0.88 X X
R = 0.36 R = 0.99 X X

SNR = -1.93 SNR = 9.18 X X
[47] X X X RMSE = 3.187 X X X X

MAE = 4.35
R = 0.8254

[51] X X X X X X RMSE = 8.64 X
MAE = 5.45 X

[56] X RMSE = 9.96 X X X X X X
MAE = 8.09

R = 0.40
[71] X X X RMSE = 10.10 X X X RMSE = 7.99

R = 0.64 MAE = 5.40
R = 0.66

[28] RMSE = 3.72 X X RMSE = 5.66 X X X X
MAE = 1.45 MAE = 3.00

R = 0.94 R = 0.92
SNR = 8.64 SNR = 2.37

[32] X X RMSE = 5.10 RMSE = 5.87 X X X RMSE = 8.68
MAE = 3.78 R = 0.89 MAE = 5.68

R = 0.86 R = 0.72
[45] X X RMSE = 3.41 X X X X X

R = 0.92
[48] X X X MAE = 1.31 X X X X

SNR = 9.44 X X X X
[52] X RMSE = 1.29 X X X RMSE = 1.56 RMSE = 0.97 X

MAE = 0.70 MAE = 0.51 MAE = 0.48
R = 0.73 R = 0.83

[53] X X X X X X RMSE = 3.368 X
MAE = 2.412

R = 0.983
[55] X RMSE = 7.06 RMSE = 6.26 X X RMSE = 0.43 X X

MAE = 3.07 MAE = 4.81 MAE = 0.28
R = 0.86 R = 0.79 R = 0.999

[58] X X RMSE = 3.68 X X X RMSE = 7.42 X
MAE = 3.01 MAE = 5.97

R = 0.85 R = 0.53
[67] X X RMSE = 3.99 RMSE = 5.49 X X X RMSE = 8.14

R = 0.87 R = 0.84 MAE = 5.30
R = 0.76

[68] X X X RMSE = 6.04 RMSE = 1.26 X X RMSE = 7.97
R = 0.84 R = 0.996 MAE = 5.02

R = 0.796
[69] X X RMSE = 3.23 X X X X X

MAE = 1.53
R = 0.97

[35] X RMSE = 7.52 X X X RMSE = 1.21 X X
MAE = 5.19 MAE = 0.74

R = 0.68 R = 1.00
[37] X RMSE = 9.50 X X X X RMSE = 3.82 X

MAE = 5.57 MAE = 2.15
R = 0.75 R = 0.97

[38] X RMSE = 6.65 X RMSE = 5.84 X RMSE = 0.77 RMSE = 3.97 X
MAE = 4.67 R = 0.85 MAE = 0.34 MAE = 1.46

R = 0.77 R = 0.99 R = 0.93
[49] X X X RMSE = 3.12 X X RMSE = 3.12 X

MAE = 1.87 MAE = 2.46
R = 0.89 R = 0.96

[54] X RMSE = 1.65 X X X RMSE = 1.07 RMSE = 2.09 X
MAE = 0.68 MAE = 0.40 MAE = 0.47

R = 0.72 R = 0.92
[61] X X RMSE = 6.42 X X X RMSE = 7.24 X

MAE = 5.01 MAE = 5.29
[62] X X RMSE = 6.53 X X RMSE = 4.29 RMSE = 2.10 X

MAE = 4.15 MAE = 2.28 MAE = 1.19
R = 0.71 R = 0.99 R = 0.98

[70] X X X X X RMSE = 2.02 X RMSE = 8.01
MAE = 1.65 MAE = 5.12

R = 0.99 R = 0.79
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6. Research Gaps625

During the last few decades, many methods for ascertaining remote HR measure-626

ments have been proposed. This has attracted much attention, and increasing numbers627

of researchers are engaged in this exciting area. In this section, we discuss some of the628

research gaps in order to suggest some possible future directions in this field.629

6.1. Influencing Factors630

The performance of remote HR measurement based on rPPG is influenced by many631

factors such as illumination changes, motion artifacts, skin-tone variations, and video632

compression [12,14,22,23,151]. There are several methods proposed for handling these633

challenges. For example, the utilization of different HR signal representations like634

spectrum images [64] and spatio-temporal maps [66–71], and also the use of attention635

mechanism [27,28,31,35,38,41,49,53,71] can deal with illumination variations and motion636

noise. STVEN [31] was designed to improve the robustness of HR measurement under637

video compression. Meta-learning approaches with fast adaptation to uncommon sam-638

ples [49,58] are suitable to deal with skin-tone variations. Additional work is needed639

to better understand and quantify the effects these influencing factors have on remote640

physiological measurement. More importantly, new methods should provide insight641

into how these challenges are handled from a technical and biophysical perspective,642

rather than just evaluating their performance on a dataset that contains the influencing643

factors.644

6.2. Measuring Other Vital Signs645

Undoubtedly, HR is a very important physiological indicator to indicate the current646

health condition of a person. Researchers in this field are mainly interested in estimating647

HR, followed by RR. However, other vital signs are also important [152,153]. For648

example, BP is useful in detecting some cardiovascular diseases like hypertension while649

SpO2 can reflect the health of the cardiorespiratory system by showing if a person has an650

adequate supply of oxygen. At the same time, these vital signs are associated to COVID651

19 and they are useful for COVID 19 diagnosing as well [154,155].There are relatively652

fewer studies that attempt to estimate BP [156–158] and SpO2 [159–161] remotely when653

compared HR and RR. There are still many research opportunities in other vital signs.654

6.3. Datasets655

Datasets are increasingly important for evaluating new proposed methods whether656

demonstrating success in addressing specific problems or increasing the effectiveness657

of previously proposed methods. For DL methods, datasets are even more important658

as they are used for training in supervised methods as well. The performance of the659

supervised methods are greatly affected by the training datasets. Currently, most of660

the existing publicly available datasets focus on two major challenges in rPPG methods661

only, that is, motion artifacts and illumination variations [12,23]. Other challenges like662

skin-tone variations [22,162,163], multiple persons detection [14,122] and long distance663

estimations [14,164] need to be overcome as well if the methods are to be, ultimately,664

robust and highly applicable in the real-world, replacing all contact-based methods.665

Moreover, the subjects in these datasets are mainly adult participants. Datasets with666

newborns as participants are also desirable for evaluating rPPG methods. As a result,667

more comprehensive, high diversity and high quality datasets are needed to fully evalu-668

ate the robustness of any new proposed method and allow comprehensive training in669

supervised methods. Such datasets are extremely beneficial to the research community.670

6.4. Performance on Different Heart Rate Ranges671

According to performance results of RePSS 2020 [150], the top 3 teams were able to672

achieve a significantly better performance on the middle HR level, where HR ranges from673

77 to 90 bpm, followed by the low HR level (less than 70 bpm). Performance at the high674



Version May 25, 2022 submitted to Sensors 23 of 30

HR level (more than 90 bpm) was the worst. This is a challenge that absolutely needs to be675

addressed in order to be accurate enough to be applied in real-world applications because676

these significantly lower or higher HRs are showing specific health problems. Moreover,677

this result indicates that using common metrics like mean absolute error (MAE), root678

mean square error (RMSE), signal-to-noise ratio (SNR) and Pearson correlation coefficient679

(R) to evaluate rPPG methods may not be effective enough. Evaluation on a wider range680

of HR levels is required in order to comprehensively test the robustness of the proposed681

method.682

6.5. Understanding of Deep Learning-Based Methods683

The advantage of using CNN in rPPG technology is that a good result can be684

obtained without very deep understanding or analysis of the specific problem; the685

disadvantage is that this DL method is a black box, which means we do not have a686

full understanding of why such a result is obtained. The lack of understanding of how687

CNN-based methods work on rPPG technology may be a barrier to further development688

of this technology and evaluation of these DL methods. [25] is a work that focused on689

the understanding of CNN-based rPPG methods rather than proposing a new model690

with state-of-the-art performance. Several experiments were performed to explore the691

CNN-based rPPG signal extraction and improve the understanding of this approach.692

In the paper, some important observations have been made. For example, it showed693

that the CNN for rPPG signal extraction is actually learning information related to the694

PPG signal but not the motion-induced intensity changes [27]. In addition, the CNN695

training is affected by the physiological delay between the video data and the reference696

finger oximeter. Researchers should direct their attention to more studies that focus on697

the understanding of DL-based rPPG methods in order to gain valuable insights and698

further improve the performance of these DL approaches.699

7. Conclusion700

In recent years, many methods for remote HR measurement have been proposed.701

Due to rapid development in the area of machine learning, DL methods have shown702

significant promise in this field. In this paper, we have provided a comprehensive703

review on most of the existing recent DL-based methods for remote HR estimation. We704

have further categorized these methods into end-to-end and hybrid DL methods, and705

grouped them based on the type of neural network being used. We then described some706

potential applications that can be achieved by using rPPG technology. Next, some rPPG707

resources like toolboxes, datasets and open challenges have been detailed in order to708

help accelerate research. Lastly, we have discussed some of the current research gaps in709

this field to shed some light on future areas and directions in this exciting field.710

As remote physiological measurement establishes itself as an emerging research711

field, we suggest more work should focus on addressing different influencing factors712

and estimating other vital signs, which will assist in bridging the gap for real-world713

applications. Furthermore, high-quality and diverse datasets are crucial for proper714

benchmarking and analysis of different methods and the future development of more715

complex DL models and architectures. Last but not least, the understanding of different716

DL-based approaches is critical, especially when integrating these networks for high-717

stakes applications like healthcare diagnostics.718
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